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План лекции

1. Компоненты связности
2. Поиск цикла (раскраска в 3 цвета)
3. Двудольные графы и раскраска в 2 цвета
4. Топологическая сортировка
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Часть 1: Компоненты связности

3



Компонента связности: определение

Компонента связности — максимальное по включению множество вершин, в котором из любой вершины
можно добраться до любой другой по рёбрам графа

Свойства:

• Каждая вершина принадлежит ровно одной компоненте
• Компоненты не пересекаются
• Граф связен ⟺ он имеет ровно одну компоненту
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Задача: найти все компоненты

Вход: неориентированный граф 𝐺 = (𝑉 , 𝐸)

Выход: для каждой вершины — номер её компоненты связности

Ключевое наблюдение: DFS посетит все вершины в компоненте связности начальной вершины.

Идея алгоритма:

1. Перебираем все вершины от 0 до 𝑛 − 1
2. Если вершина ещё не посещена — запускаем из неё DFS
3. Все вершины, достигнутые этим DFS, образуют одну компоненту
4. Увеличиваем счётчик компонент
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Компоненты связности: реализация

std::vector<std::vector<int>> adj(n);
std::vector<int> component(n, -1); // номер компоненты для каждой вершины
int num_components = 0;

void dfs(int v, int comp) {
component[v] = comp;
for (int u : adj[v]) {

if (component[u] == -1) {
dfs(u, comp);

}
}

}
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Компоненты связности: реализация

std::vector<std::vector<int>> adj(n);
std::vector<int> component(n, -1); // номер компоненты для каждой вершины
int num_components = 0;

void find_components() {
for (int v = 0; v < n; ++v) {

if (component[v] == -1) {
dfs(v, num_components);
++num_components;

}
}

}
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Пример: компоненты связности

8



Компоненты связности: сложность

Временная сложность: 𝑂(𝑛 + 𝑚)
• Каждая вершина посещается ровно один раз
• Каждое ребро просматривается ровно два раза

Пространственная сложность: 𝑂(𝑛)
• Массив component размера 𝑛
• Глубина рекурсии до 𝑂(𝑛)
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Задача: есть ли цикл в графе?

Вход: ориентированный граф 𝐺 = (𝑉 , 𝐸)

Выход:

• Есть ли в графе цикл?
• Если есть — вывести вершины цикла
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Раскраска вершин: белый, серый, чёрный

Введём три состояния (цвета) для каждой вершины:

Цвет Значение Константа
Белый вершина не посещена WHITE = 0
Серый вершина в процессе обработки (в стеке

рекурсии)
GRAY = 1

Чёрный вершина полностью обработана BLACK = 2

Ключевое наблюдение: цикл существует ⟺ есть ребро в серую вершину
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Почему серая вершина означает цикл?

Серая вершина = вершина в текущем стеке рекурсии

Если из 𝑢 есть ребро в серую вершину 𝑣:
• Существует путь 𝑣 → … → 𝑢 (по дереву DFS)
• Существует ребро 𝑢 → 𝑣
• Значит, есть цикл 𝑣 → … → 𝑢 → 𝑣
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Пример: граф с циклом
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Поиск цикла: реализация

enum Color { WHITE = 0, GRAY = 1, BLACK = 2 };

std::vector<std::vector<int>> adj(n);
std::vector<Color> color(n, WHITE);
std::vector<int> parent(n, -1);
int cycle_start = -1, cycle_end = -1;
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Поиск цикла: реализация
bool dfs(int v) {

color[v] = GRAY;
for (int u : adj[v]) {

if (color[u] == GRAY) {
// Нашли цикл: ребро v -> u, где u серая
cycle_start = u;
cycle_end = v;
return true;

}
if (color[u] == WHITE) {

parent[u] = v;
if (dfs(u)) return true;

}
}
color[v] = BLACK;
return false;

}

• что нужно изменить для обработки неориентированного графы?
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Восстановление цикла
std::vector<int> get_cycle() {

std::vector<int> cycle;

// Идём от cycle_end к cycle_start по parent
int v = cycle_end;
while (v != cycle_start) {

cycle.push_back(v);
v = parent[v];

}
cycle.push_back(cycle_start);

// Разворачиваем, чтобы получить порядок обхода
std::reverse(cycle.begin(), cycle.end());

return cycle;
}
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Запуск поиска цикла

bool has_cycle() {
for (int v = 0; v < n; ++v) {

if (color[v] == WHITE) {
if (dfs(v)) {

return true;
}

}
}
return false;

}

Запускаем DFS из всех непосещённых вершин — граф может быть несвязным
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Поиск цикла: сложность

Временная сложность: 𝑂(𝑛 + 𝑚)
• Каждая вершина меняет цвет: белый → серый → чёрный
• Каждое ребро просматривается один раз

Пространственная сложность: 𝑂(𝑛)
• Массивы color, parent
• Глубина рекурсии
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Раскраска графа: определение

Раскраска графа в 𝑘 цветов — это функция 𝑐 ∶ 𝑉 → {1, 2, … , 𝑘}, такая что для любого ребра (𝑢, 𝑣) ∈ 𝐸
выполняется 𝑐(𝑢) ≠ 𝑐(𝑣)

Иначе говоря: смежные вершины должны иметь разные цвета

Хроматическое число 𝜒(𝐺) — минимальное 𝑘, для которого существует раскраска в 𝑘 цветов
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Раскраска графа: примеры

Граф 𝜒(𝐺) Пояснение
Пустой граф (без рёбер) 1 Все вершины одного цвета
Дерево 2 Чередуем цвета по уровням
Цикл чётной длины 2 Чередуем цвета
Цикл нечётной длины 3 Два цвета недостаточно
Полный граф 𝐾𝑛 𝑛 Все вершины попарно смежны
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Раскраска графа: сложность задачи

Задача: дан граф 𝐺 и число 𝑘. Можно ли раскрасить 𝐺 в 𝑘 цветов?

Сложность:

• 𝑘 = 1: тривиально (граф без рёбер)
• 𝑘 = 2: решается за 𝑂(𝑛 + 𝑚) — сегодня разберём
• 𝑘 ≥ 3: NP-полная задача!

Даже для 𝑘 = 3 не известен полиномиальный алгоритм
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Двудольный граф: определение

Двудольный граф (bipartite graph) — граф, вершины которого можно разбить на два множества 𝐿 и 𝑅 так,
что все рёбра идут между 𝐿 и 𝑅 (внутри множеств рёбер нет)

Эквивалентные определения:

• Граф можно раскрасить в 2 цвета
• 𝜒(𝐺) ≤ 2
• Граф не содержит циклов нечётной длины
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Проверка двудольности: идея

Алгоритм:

1. Запускаем DFS/BFS из произвольной вершины
2. Красим стартовую вершину в цвет 0
3. Всех соседей красим в противоположный цвет (1)
4. Соседей соседей — снова в цвет 0
5. Если встретили уже покрашенную вершину того же цвета — граф не двудольный
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Пример: двудольный граф
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Двудольность: сложность

Временная сложность: 𝑂(𝑛 + 𝑚)
• Стандартный DFS/BFS

Пространственная сложность: 𝑂(𝑛)
• Массив цветов
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Топологическая сортировка: определение

Топологическая сортировка ориентированного графа — это линейный порядок вершин 𝑣1, 𝑣2, … , 𝑣𝑛 такой,
что для каждого ребра (𝑣𝑖, 𝑣𝑗) ∈ 𝐸 выполняется 𝑖 < 𝑗

• если есть ребро из 𝑢 в 𝑣, то 𝑢 стоит раньше 𝑣 в порядке
• вершины можно пронумеровать таким образом, что ребра будут идти только из вершин с меньшим
номером в вершины с большим
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Топологическая сортировка: когда существует?

Теорема: Топологическая сортировка существует ⟺ граф ациклический

Доказательство (⇒):

• Пусть есть цикл 𝑣1 → 𝑣2 → … → 𝑣𝑘 → 𝑣1
• Тогда 𝑣1 < 𝑣2 < … < 𝑣𝑘 < 𝑣1 — противоречие

Доказательство (⇐): конструктивно — алгоритм
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Применения топологической сортировки

• Компиляция: порядок сборки модулей с зависимостями

• Расписание: порядок выполнения задач с prerequisite

• Курсы в университете: какие предметы брать сначала

• Makefile / build systems: порядок сборки

• Spreadsheet: порядок вычисления ячеек с формулами
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Топологическая сортировка через DFS

Ключевое наблюдение:

При DFS вершина получает 𝑡𝑜𝑢𝑡 только после обработки всех достижимых из неё вершин

Алгоритм:

1. Запустить DFS из всех вершин
2. Записывать вершины в список при выходе (когда присваиваем 𝑡𝑜𝑢𝑡)
3. Развернуть список — это и есть топологический порядок
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Почему это работает?

Пусть есть ребро 𝑢 → 𝑣. Возможны случаи:

Ситуация 𝑡𝑜𝑢𝑡[𝑢] vs 𝑡𝑜𝑢𝑡[𝑣]
𝑣 белая при входе в 𝑢 𝑡𝑜𝑢𝑡[𝑢] > 𝑡𝑜𝑢𝑡[𝑣] OK
𝑣 чёрная при входе в 𝑢 𝑡𝑜𝑢𝑡[𝑢] > 𝑡𝑜𝑢𝑡[𝑣] OK
𝑣 серая при входе в 𝑢 цикл! (граф не DAG)

Во всех корректных случаях 𝑡𝑜𝑢𝑡[𝑢] > 𝑡𝑜𝑢𝑡[𝑣]

После разворота: 𝑢 раньше 𝑣 �
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Топологическая сортировка: реализация

std::vector<std::vector<int>> adj(n);
std::vector<bool> visited(n, false);
std::vector<int> order; // результат

void dfs(int v) {
visited[v] = true;
for (int u : adj[v]) {

if (!visited[u]) {
dfs(u);

}
}
order.push_back(v); // добавляем при выходе

}
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Пример: топологическая сортировка
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Топологическая сортировка: сложность

Временная сложность: 𝑂(𝑛 + 𝑚)
• Стандартный DFS + разворот массива 𝑂(𝑛)

Пространственная сложность: 𝑂(𝑛)
• Массивы visited/color, order
• Глубина рекурсии
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Итоги: компоненты связности

• Запускаем DFS из каждой непосещённой вершины
• Каждый запуск — новая компонента
• Сложность: 𝑂(𝑛 + 𝑚)
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Итоги: поиск цикла

• Раскраска: белый → серый → чёрный
• Цикл ⟺ ребро в серую вершину (back edge)
• Восстановление через массив parent
• Сложность: 𝑂(𝑛 + 𝑚)
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Итоги: двудольность

• Двудольный ⟺ раскрашивается в 2 цвета ⟺ нет нечётных циклов
• Алгоритм: DFS с чередованием цветов
• Конфликт = вершина того же цвета
• Сложность: 𝑂(𝑛 + 𝑚)
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Итоги: топологическая сортировка

• Линейный порядок: если 𝑢 → 𝑣, то 𝑢 раньше 𝑣
• Существует только для DAG (ациклических графов)
• DFS: обратный порядок 𝑡𝑜𝑢𝑡
• Кан: удаление вершин с нулевой входящей степенью
• Сложность: 𝑂(𝑛 + 𝑚)
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