
Графы и обход в глубину (DFS)

Denis Bakin

1

Что такое граф?

Графом называется пара множеств 𝐺 = (𝑉 , 𝐸), где:
• 𝑉 — множество вершин (vertices)
• 𝐸 ⊆ 𝑉 × 𝑉 — множество рёбер (edges), пар вершин (𝑢, 𝑣)

Пример: 𝑉 = {1, 2, 3, 4}, 𝐸 = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}

2

Что такое граф?

Графом называется пара множеств 𝐺 = (𝑉 , 𝐸), где:
• 𝑉 — множество вершин (vertices)
• 𝐸 ⊆ 𝑉 × 𝑉 — множество рёбер (edges), пар вершин (𝑢, 𝑣)

Пример: 𝑉 = {1, 2, 3, 4}, 𝐸 = {(1, 2), (1, 3), (1, 4), (2, 4), (3, 4)}

2

Зачем нужны графы?

Графы моделируют связи между объектами:

Предметная область Вершины Рёбра
Социальная сеть пользователи дружба
Карта города перекрёстки дороги
Интернет сайты гиперссылки
Молекула атомы химические связи
Расписание задачи зависимости

3

Ориентированные и неориентированные графы

Неориентированный граф — граф, в котором рёбра не имеют направления: (𝑢, 𝑣) = (𝑣, 𝑢)

Ориентированный граф (орграф) — граф, в котором каждое ребро имеет направление: (𝑢, 𝑣) ≠ (𝑣, 𝑢)

Примеры:

• Подписки в Twitter — ориентированный (A подписан на B ⇏ B подписан на A)
• Дружба в VK — неориентированный (дружба взаимна)

4

Терминология: смежность и инцидентность

• Вершины 𝑢 и 𝑣 называются смежными, если существует ребро (𝑢, 𝑣) ∈ 𝐸
• Ребро 𝑒 = (𝑢, 𝑣) называется инцидентным вершинам 𝑢 и 𝑣
• Степенью вершины 𝑣 (обозначается deg(𝑣)) называется количество инцидентных ей рёбер

Для ориентированных графов различают:

• Исходящая степень deg+(𝑣) — количество рёбер, выходящих из 𝑣
• Входящая степень deg−(𝑣) — количество рёбер, входящих в 𝑣

5

Определения

• Петля — ребро, соединяющее вершину саму с собой: (𝑣, 𝑣)
• Кратные рёбра — несколько рёбер между одной и той же парой вершин

• Простой граф — граф без петель и кратных рёбер

• Мультиграф — граф, допускающий кратные рёбра

6

Терминология: пути

• Путь из 𝑣0 в 𝑣𝑘 — последовательность вершин (𝑣0, 𝑣1, … , 𝑣𝑘), где каждые две соседние вершины
соединены ребром: (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸

• Длина пути — количество рёбер в пути (равно 𝑘)
• Простой путь — путь без повторяющихся вершин

Вершина 𝑢 достижима из 𝑣, если существует путь из 𝑣 в 𝑢

7

Терминология: пути

• Путь из 𝑣0 в 𝑣𝑘 — последовательность вершин (𝑣0, 𝑣1, … , 𝑣𝑘), где каждые две соседние вершины
соединены ребром: (𝑣𝑖, 𝑣𝑖+1) ∈ 𝐸

• Длина пути — количество рёбер в пути (равно 𝑘)
• Простой путь — путь без повторяющихся вершин

Вершина 𝑢 достижима из 𝑣, если существует путь из 𝑣 в 𝑢

7

Терминология: связность

• Неориентированный граф называется связным, если из любой вершины достижима любая другая

• Компонента связности — максимальное по включению подмножество вершин, в котором любые две
вершины достижимы друг из друга

Для ориентированных графов:

• Слабо связный — связный, если забыть про направления рёбер
• Сильно связный — из любой вершины достижима любая другая (с учётом направлений)

8

Терминология: связность

• Неориентированный граф называется связным, если из любой вершины достижима любая другая

• Компонента связности — максимальное по включению подмножество вершин, в котором любые две
вершины достижимы друг из друга

Для ориентированных графов:

• Слабо связный — связный, если забыть про направления рёбер
• Сильно связный — из любой вершины достижима любая другая (с учётом направлений)

8

Терминология: циклы

• Цикл — путь (𝑣0, 𝑣1, … , 𝑣𝑘), где 𝑣0 = 𝑣𝑘 (начальная и конечная вершины совпадают)

• Простой цикл — цикл, в котором все вершины, кроме первой и последней, различны

• Ацикличный граф — граф, не содержащий простых циклов

9

Деревья

Дерево — связный ацикличный неориентированный граф

Эквивалентные определения (для графа с 𝑛 вершинами):

• Связный граф с (𝑛 − 1) ребром
• Ацикличный граф с (𝑛 − 1) ребром
• Граф, в котором между любыми двумя вершинами существует ровно один простой путь

Лес — ацикличный граф (не обязательно связный), т.е. набор деревьев

10

Деревья

Дерево — связный ацикличный неориентированный граф

Эквивалентные определения (для графа с 𝑛 вершинами):

• Связный граф с (𝑛 − 1) ребром
• Ацикличный граф с (𝑛 − 1) ребром
• Граф, в котором между любыми двумя вершинами существует ровно один простой путь

Лес — ацикличный граф (не обязательно связный), т.е. набор деревьев

10

Хранение графов: обзор

Вершины нумеруются от 0 до (𝑛 − 1)

Три основных способа:

Способ Память Проверка ребра Соседи вершины
Список рёбер 𝑂(𝑚) 𝑂(𝑚) 𝑂(𝑚)
Матрица смежности 𝑂(𝑛2) 𝑂(1) 𝑂(𝑛)
Список смежности 𝑂(𝑛 + 𝑚) 𝑂(deg) 𝑂(deg)

где 𝑛 = |𝑉 |, 𝑚 = |𝐸|, deg — степень вершины

11

Способ 1: Список рёбер

Список рёбер — представление графа в виде массива пар (𝑢, 𝑣) для каждого ребра
std::vector<std::pair<int, int>> edges;
// или
struct Edge { int u, v; };
std::vector<Edge> edges;

12

Способ 2: Матрица смежности

Матрица смежности — квадратная матрица 𝐴 размера 𝑛 × 𝑛, где

𝐴[𝑖][𝑗] = {1, если (𝑖, 𝑗) ∈ 𝐸
0, иначе

std::vector<std::vector<int>> A(n, std::vector<int>(n, 0));

Свойство: для неориентированного графа матрица симметрична: 𝐴[𝑖][𝑗] = 𝐴[𝑗][𝑖]

13

Способ 2: Матрица смежности

Матрица смежности — квадратная матрица 𝐴 размера 𝑛 × 𝑛, где

𝐴[𝑖][𝑗] = {1, если (𝑖, 𝑗) ∈ 𝐸
0, иначе

std::vector<std::vector<int>> A(n, std::vector<int>(n, 0));

Свойство: для неориентированного графа матрица симметрична: 𝐴[𝑖][𝑗] = 𝐴[𝑗][𝑖]

13

Матрица смежности: особенности

• Проверка ребра за 𝑂(1): if (A[u][v])
• 𝑂(𝑛2) памяти — даже для разреженных графов
• Перебор соседей за 𝑂(𝑛)

14

Способ 3: Список смежности

Список смежности — представление графа, где для каждой вершины 𝑣 хранится список всех смежных с ней
вершин
std::vector<std::vector<int>> adj(n);
// adj[v] = {u : (v, u) � E}

• 𝑂(𝑛 + 𝑚) памяти, перебор соседей за 𝑂(deg(𝑣))
• проверка ребра за 𝑂(deg)

15

Способ 3: Список смежности

Список смежности — представление графа, где для каждой вершины 𝑣 хранится список всех смежных с ней
вершин
std::vector<std::vector<int>> adj(n);
// adj[v] = {u : (v, u) � E}

• 𝑂(𝑛 + 𝑚) памяти, перебор соседей за 𝑂(deg(𝑣))
• проверка ребра за 𝑂(deg)

15

Список смежности: добавление рёбер

Неориентированный граф:
void add_edge(int u, int v) {

adj[u].push_back(v);
adj[v].push_back(u); // обратное ребро

}

Ориентированный граф:
void add_edge(int u, int v) {

adj[u].push_back(v); // только одно направление
}

16

Обход в глубину: определение

Поиск в глубину (DFS, Depth-First Search) — алгоритм обхода графа, который:

1. Начинает с заданной стартовой вершины
2. Посещает вершину и рекурсивно обходит всех непосещённых соседей
3. Возвращается, когда все соседи посещены

17

DFS: базовая реализация

std::vector<std::vector<int>> adj; // граф
std::vector<bool> visited; // посещена ли вершина

void dfs(int v) {
visited[v] = true;

for (int u : adj[v]) {
if (!visited[u]) {

dfs(u);
}

}
}

18

Времена входа и выхода: определение

При обходе DFS для каждой вершины 𝑣 определяются:

• 𝑡𝑖𝑛[𝑣] — время входа — момент, когда алгоритм впервые посетил 𝑣
• 𝑡𝑜𝑢𝑡[𝑣] — время выхода — момент, когда алгоритм полностью обработал 𝑣 и всё её поддерево

Времена измеряются глобальным счётчиком (таймером), который увеличивается при каждом входе в новую
вершину

19

Времена входа и выхода: определение

При обходе DFS для каждой вершины 𝑣 определяются:

• 𝑡𝑖𝑛[𝑣] — время входа — момент, когда алгоритм впервые посетил 𝑣
• 𝑡𝑜𝑢𝑡[𝑣] — время выхода — момент, когда алгоритм полностью обработал 𝑣 и всё её поддерево

Времена измеряются глобальным счётчиком (таймером), который увеличивается при каждом входе в новую
вершину

19

tin и tout: реализация

std::vector<int> tin, tout;
int timer = 0;

void dfs(int v) {
tin[v] = timer++; // фиксируем время входа
visited[v] = true;

for (int u : adj[v]) {
if (!visited[u]) {

dfs(u);
}

}

tout[v] = timer; // фиксируем время выхода
}

20

tin и tout: пример

Вершина tin tout Интерпретация
0 0 5 корень, обработка всего дерева
1 1 4 поддерево с 3 вершинами
2 4 5 лист, обработан последним
3 2 3 лист внутри поддерева 1
4 3 4 лист внутри поддерева 1

Полуинтервал [𝑡𝑖𝑛𝑣, 𝑡𝑜𝑢𝑡𝑣) — “время жизни” вершины в стеке рекурсии

21

Свойство 1: проверка предка

Вершина 𝑢 является предком вершины 𝑣 в дереве DFS тогда и только тогда, когда

𝑡𝑖𝑛[𝑢] ≤ 𝑡𝑖𝑛[𝑣] и 𝑡𝑜𝑢𝑡[𝑣] ≤ 𝑡𝑜𝑢𝑡[𝑢]

22

Свойство 2: вложенность интервалов

Для любых двух вершин 𝑢 и 𝑣 полуинтервалы [𝑡𝑖𝑛𝑢, 𝑡𝑜𝑢𝑡𝑢) и [𝑡𝑖𝑛𝑣, 𝑡𝑜𝑢𝑡𝑣):
• либо не пересекаются (вершины в разных поддеревьях)
• либо один вложен в другой (одна вершина — предок другой)

23

Свойство 3: размер поддерева

Размер поддерева вершины 𝑣 (количество вершин, включая саму 𝑣):

𝑠𝑖𝑧𝑒(𝑣) = 𝑡𝑜𝑢𝑡[𝑣] − 𝑡𝑖𝑛[𝑣]

24

Применения DFS

• Проверка связности — запустить DFS, проверить все ли вершины посещены

• Поиск компонент связности — запускать DFS из непосещённых вершин

• Топологическая сортировка — порядок 𝑡𝑜𝑢𝑡 в обратном порядке

• Поиск циклов — если встретили посещённую вершину (не родителя)

• Мосты и точки сочленения — с использованием 𝑡𝑖𝑛 и 𝑓𝑢𝑝

25

Сложность DFS

Временная сложность DFS: 𝑂(𝑛 + 𝑚)

Пространственная сложность: 𝑂(𝑛)

26

Итоги

• Граф 𝐺 = (𝑉 , 𝐸) — модель связей между объектами

• Хранение: список смежности — универсальный выбор, 𝑂(𝑛 + 𝑚)
• DFS — рекурсивный обход графа “вглубь”, сложность 𝑂(𝑛 + 𝑚)
• tin/tout — мощный инструмент:

• проверка “предок ли 𝑢 для 𝑣” за 𝑂(1)
• размер поддерева за 𝑂(1)
• сведение запросов на поддереве к запросам на отрезке

27

